
Communications to the Editor

Application of Solid-State 31P NMR to the Study of
Langmuir -Blodgett Films

Gail E. Fanucci, C. Russell Bowers,* and Daniel R. Talham*

Department of Chemistry, UniVersity of Florida
GainesVille Florida 32611-7200

ReceiVed July 7, 1998

Although NMR is a very powerful spectroscopic tool, it has
rarely been used to study the molecular structure and organization
of Langmuir-Blodgett (LB) films. This lack of use results
predominantly from two factors. First, LB films are typically
transferred onto flat surfaces of low surface area where the number
of nuclei per monolayer (ca. 1015/cm2) is well below the
conventional NMR detection limit. Second, even when multilayer
samples are prepared (∼1018 molecules/sample), the polymeric
substrates onto which the LB films are typically transferred for
magnetic resonance studies1 introduce large1H and 13C back-
ground signals that obscure the interpretation of the NMR spectra2

of these spin species. However, there are many phosphorus-
containing molecules, such as phospholipids and organophos-
phonic acids, that are of interest as LB films,3 and here it is
demonstrated that31P magic angle spinning (MAS) NMR can be
used to study octadecylphosphonate multilayer LB films. Results
show that both quantitative and qualitative information about the
film structure can be obtained, and to our knowledge, this is the
first NMR study to characterize the structure of an LB film.

Octadecylphosphonic acid (ODPA, C18H37PO(OH)2) is known
to form quality Langmuir monolayers and LB films.4,5 Figure 1a
shows the31P MAS NMR spectrum6 of a 125-bilayer ODPA LB
film7 with two resolved signals, one atδiso ) 28.3 ppm and the
other atδiso ) 22.5 ppm. The signal at 28.3 ppm integrates to
approximately 65% of the film structure and can be assigned to
the free acid form of ODPA. The isotropic shift of the second
signal occurs atδiso ) 22.5 ppm and corresponds to dibasic
octadecylphosphonic acid weakly interacting with Cd2+ ions
which are incorporated into the film for charge stabilization. It is
well-known that many LB films are stabilized by the presence of
divalent metal ions incorporated into the films,8 and here a 0.5
mM Cd2+ subphase of pH 2.5-3.0 was used. The stronger signal
at 28.3 ppm is slightly shifted fromδiso ) 31.5 ppm9 of solid

ODPA (Figure 1b) due to weak associations between the free
phosphonic acid and nearby Cd2+ ions. The assignments for both
of these signals are based upon comparison to sodium octade-
cylphosphonates, where for the mono- and disodium salts, the
corresponding31P NMR resonances are shifted upfield from the
free acid form of ODPA and occur a 26.5 and 23.8 ppm,
respectively.10

Previous work11,12 on metal phosphonate LB films shows that
when films of ODPA are deposited from a 0.5 mM La3+ subphase
at pH 2.5-3.0, the metal ions are not incorporated in an ion-
pairing manner but rather the film crystallizes to form a known
solid-state metal phosphonate lattice structure.13,14 Metal phos-
phonates form a class of layered mixed organic/inorganic materials
that contain two-dimensional continuous inorganic lattice networks
that are separated by layers of the organophosphonate substi-
tuents.13-17 LB techniques can be used to prepare single layers
of these solid-state materials,11,12,18,19and multilayer films can be
constructed where one layer of the metal phosphonate is formed
during each deposition cycle (Figure 2).

Figure 3 shows31P MAS NMR spectra of a 35-bilayer and a
125-bilayer lanthanum octadecylphosphonate (ODP) LB film.20

Note that in the spectra of both samples, only one NMR signal is
detected atδiso ) 24.8 ppm. The presence of only one relatively
narrow signal reflects a single structure type within the multilayer
sample. Previously, others have used31P MAS NMR to study
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Figure 1. 31P MAS NMR spectra of (a) a 125-bilayer ODPA LB film
containing Cd2+ ions and of (b) solid octadecylphosphonic acid.
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the metal-oxygen-phosphorus bonding motif in polycrystalline
metal phosphonate solids21-24 and in organophosphonic acids
adsorbed onto high surface area particles.9,10,25From these earlier

reports it is known that the isotropic shift and the chemical shift
anisotropy can be related to the type of metal phosphonate
bonding geometry. As is evident from Figure 3, this isotropic
shift occurs at the same value as the shift obtained from a sample
of polycrystalline lanthanum butylphosphonate and indicates that
the structure in the LB film is analogous to that of the powdered
solid. In addition, the slower spinning spectrum of the 125-bilayer
film displays a well-defined spinning sideband pattern analogous
to that of the solid-state polycrystalline material.26 There are no
peaks in the spectrum corresponding to free acid sites in these
multilayer assemblies.27

These results demonstrate that it is possible to obtain quality
31P MAS NMR spectra of multilayer LB films. In addition, by
comparing the spectra of the films with the analogous solid-state
materials, a definitive structure of the LB film can be determined.
This method takes advantage of the relatively high NMR
sensitivity of phosphorus-31 and the lack of any background
signals from the substrate that might complicate the interpretation
of the spectra. On the basis of the cross-sectional area of the
organophosphonates in the LaH(O3PR)2 structure of 24 Å2/
molecule, it is estimated that the 35-bilayer and both 125-bilayer
samples contain about 1.0× 1018 and 3.5× 1018 31P nuclei,
respectively. Given the signal-to-noise ratio (SNR) of the spectra
in Figure 3a and b, a lower detection limit (i.e., SNR of 2:1) of
2.0 × 1017 spins (or 5 bilayers) can be established under the
present conditions.28 This detection limit could be further
reduced29 by obtaining the spectra at higher field, because the
signal-to-noise ratio is proportional to B0

11/4. Given these factors,
a conservative estimate is that31P MAS NMR with SNR of 8:1
of LB films containing 5 bilayers is possible (assuming a 800
MHz spectrometer). Hence, this technique may find future
applications as a general tool for the structural characterization
of low surface area thin films containing phosphorus, such as
other phosphonate or phospholipid LB films as well as some
spontaneously adsorbed multilayer films.30
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Figure 2. Comparison of the organic/inorganic layered structures of solid-
state metal phosphonates to metal phosphonate LB films. (Left) The
layered metal phosphonate structure of LaH(O3PC6H5)2. The crystal-
lographic data are taken from ref 13. Key: oxygen and carbon, open
circles; phosphorus, hatched circles; and lanthanum, black circles. (Right)
Schematic of a metal phosphonate LB film where the polar region contains
a 2D inorganic continuous lattice.

Figure 3. (Left) 31P MAS NMR spectra of (a) a 35-bliayer La ODP LB
film, (b) a 125-bilayer La ODP LB film, and of (c) lanthanum
butylphosphonate powder each acquired at a spinning rate of 6.8 kHz.
(Right) 31P MAS NMR spectra of (d) the same 125-bilayer La ODP LB
film and of (e) lanthanum butylphosphonate acquired at a spinning rate
of 3.4 kHz.
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